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Abstract

Background: The evolutionary history of biodiversity in South America has been poorly studied in the seasonal dry
tropical forest (SDTF). Species diversification in this ecosystem may have a twofold explanation. First, intermittent
connections in the middle and late Pleistocene promoted species dispersal and/or genetic connectivity between line-
ages isolated in disjunct patches of forest. Second, allopatric speciation proceeded immediately after the formation
and colonization of the SDTF in the Neogene. Here we studied the diversification of Psammolestes, a genus endemic
of the SDTF and naturally infected with Trypanosoma cruzi (agent of Chagas disease), using a combination of phy-
logenetic, population genetics and niche model methods, and evaluated the reliability of the three morphospecies
currently recognized.

Results: Our multilocus analyses recovered P. coreodes and P, tertius in a monophyletic clade sister to P arthuri. Spe-
cies delimitation tests recovered these lineages as different species despite the shared genetic variation observed
between P coreodes and P, tertius in five genes. Also, genetic variation of the genus clustered in three groups that were
consistent with the three morphospecies. Our demographic model predicted a scenario of divergence in absence of
gene flow, suggesting that mixed haplotypes may be the result of shared ancestral variation since the divergence of
the subtropical-temperate species P coreodes and P tertius. In contrast, the tropical species P arthuri was highly dif-
ferentiated from the other two in all tests of genetic structure, and consistently, the Monmonier’s algorithm identified
a clear geographical barrier that separates this species from P, coreodes and P, tertius.

Conclusions: We found three genetically structured lineages within Psammolestes that diverged in absence of gene
flow in the late Miocene. This result supports a scenario of species formation driven by geographical isolation rather
than by divergence in the face of gene flow associated with climatic oscillations in the Pleistocene. Also, we identified
the Amazon basin as a climatic barrier that separates tropical from subtropical-temperate species, thus promoting
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allopatric speciation after long range dispersion. Finally, each species of Psammolestes occupies different climatic
niches suggesting that niche conservatism is not crucial for species differentiation. These findings influence the cur-
rent vector surveillance programs of Chagas disease in the region.

Keywords: Psammolestes, Niche divergence, Seasonal dry tropical forest, Triatominae, Rhodniini, Phylogenetic,

Population genetics

Background

The Andes uplift and the formation of the Amazon Basin
promoted species diversification via vicariance and/or
dispersal which may be associated with climatic oscilla-
tions. Many examples from multiple organisms show the
effect of such geological events in species differentiation
[1-6], but only a handful show the role of geomorphol-
ogy and climatic variations in the diversification of spe-
cies from the seasonal dry tropical forest (SDTF) [7-9].
In tropical Americas, this ecosystem includes disjunct
patches characterized by relatively low rainfall and high
climatic seasonality [8, 10].

Species diversification in SDTF may be the result of
these dry forest patches being intermittently connected
during cold and dry periods in the middle and late Pleis-
tocene, thus promoting species dispersal and/or genetic
connectivity between isolated lineages ([8, 11]; the Pleis-
tocene Arc hypothesis). Alternatively, such diversifica-
tion may be due to genetic differentiation in allopatry,
that could either be coupled or not with occasional long
distance dispersal events [12—15]. For example, the diver-
sification of geckos of the genus Phyllopezus was not
influenced by Pleistocene climatic oscillations, but show
a high phylogenetic structure associated with Miocene
geomorphology [16]. In contrast, divergence in birds of
the genus Phacellodomus and arthropods such as Neph-
ila or Drosophila gouveai seems to be a consequence of
Pleistocene climatic variation [11, 17, 18]. Also, stud-
ies in plants suggest that a combination of both climatic
and geological changes were important for their diver-
sification [9, 19, 20]. However, studies on the matter are
scarce, and more evidence is needed to understand the
evolutionary history of species inhabiting STDF [8].

The genus Psammolestes belongs to the subfamily Tri-
atominae that excels between the subfamilies of Reduvii-
dae due to their hematophagous behavior, but specially
for being vectors of Trypanosoma cruzi [21] (Kineto-
plastida, Trypanosomatidae), which causes the Chagas
disease [22]. As Chagas disease has no effective treat-
ment (e.g. vaccine), vector control strategies arise as
alternatives to prevent and control the spread of not only
the Chagas disease, but other tropical diseases as well
[23-25]. The establishing of successful vector control
strategies could benefit from a deep understanding of the
vector’s biology, ecology, and evolution [26-28].

The genus Psammolestes (Reduviidae: Triatominae:
Rhodniini) occurs in SDTF in apparent association with
nests of Furnariidae birds [29-33]. This genus com-
prises three species, P. arthuri (Pinto, 1926), P. tertius
(Lent & Jurberg, 1965) and P. coreodes (Bergroth, 1911),
whose ecology and behavior remain largely unknown
[31]. Psammolestes arthuri occurs across the eastern
plains of Colombian and Venezuela, P. tertius is found
in coastal regions near the Cerrado, Caatinga and the
Mata Atlantica in Brazil, and P coreodes distributes
across the Chaco in Argentina, Paraguay, Bolivia, and
Brazil [26, 34]. These species do not differ in karyotype
[35-37], but are recognized based on morphologi-
cal traits [31]. For example, P. arthuri is the most eas-
ily recognizable species based on a smooth and shiny
cuticle in the thorax and the head, lack of cervical con-
striction, long hairs restricted to the apex of the sec-
ond and third segments of the stylet, an anterolateral
pronotal margin distinctly extended, and male genitalia
with basal plate struts completely fused [31]. In addi-
tion, P. tertius and P. coreodes are recognized based on
male genitalia morphology, anteocular distance, and
post-ocular distance. Specifically, P tertius has basal
plate struts broadly S-shaped, while those of P. coreodes
are hook shaped. Also, the anteocular distance in P, ter-
tius is at least 2x higher than its post-ocular distance,
while that of P. coreodes is always less than 2x [31, 38].
Additionally, recent evidence reported the existence of
hybrid inviability in controlled crosses between P. ter-
tius and P. coreodes [38].

Species of Psammolestes were initially grouped into
the tribe Psammolestini and separated from Rhod-
niini [26, 39], but later they were placed back within
Rhodniini because they occur in arboreal habitats and
have protuberances behind the eyes [31]. Nonetheless,
Psammolestes and Rhodnius were kept as separate gen-
era as the femur and head of Psammolestes are wider
and shorter than those of Rhodnius [31]. These taxo-
nomic classifications have been tested at the molecular
level, and it is well known that Rhodnius is paraphyletic
compared to Psammolestes [28, 40—44]. However, only
one molecular study on the phylogenetic relationships
in the Triatominae subfamily included the three species
of Psammolestes, and found P. arthuri sister to P. tertius
and this clade sister to P. coreodes [45]. These findings
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Fig. 1 Maximum Likelihood phylogenetic reconstruction and geographical barrier test based on the seven molecular loci used in this study. A
Phylogenetic reconstruction with the ML algorithm based on the seven molecular loci used in this study. Bootstrap values on the internal nodes
are shown in the following order: SH-aLRT/aBayes/ultrafast bootstrap support. Only nodes with bootstrap values higher than 60 are shown. B
Geographical barrier test (Monmonier’s algorithm) with the thick black line representing the main geographical barrier, and thin lines being the
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suggest that Psammolestes is a monophyletic clade
within the prolixus group [45].

Additionally, multiple studies have revealed a major
role of niche conservatism in the diversification of the
subfamily Triatominae [46—49]. For example, at the mac-
roevolutionary scale, Ceccarelli et al. [47] found that trop-
ical species of Triatominae share the same niche despite
their phylogenetic differences, while niche conservatism
in temperate species is due to shared evolutionary his-
tory. Nevertheless, the effect of niche conservatism in the
diversification of species of Psammolestes remains to be
tested. This is especially relevant as P arthuri is a tropi-
cal species but P. tertius and P. coreodes have temperate
distributions.

In this study, we used phylogenetic, population genet-
ics analyses, and niche modeling to test the existence
of discrete lineages within Psammolestes and investi-
gate the role of the niche in maintaining these species.
Our hypothesis was that the Amazon basin acts as a
dispersion barrier that separates tropical and subtropi-
cal-temperate species thus suggesting a major role of geo-
morphology events in the divergence of Psammolestes.
This scenario predicts that: (i) P coreodes and P. tertius
are most closely related to each other than they are to P
arthuri, and (ii) species differentiation proceeds despite
niche conservatism. The understanding of the biotic and
abiotic processes that shape vector species diversity of
tropical diseases, as well as, the factors involved in their
speciation process are essential for the settlement of ade-
quate strategies for disease transmission control [23].

Results

Molecular phylogenetics

The resulting ML gene topologies were not concordant.
The CYTB and PJH topologies (see Additional files 1 and
2) recovered P. coreodes and P. tertius as sister monophy-
letic clades, while 28S, CISP, LSM, TRNA and UPCA
topologies (see Additional files 3, 4, 5, 6 and 7) did not
recover them as reciprocally monophyletic. However, all
the seven gene topologies showed P arthuri as a well-
supported monophyletic clade. Topological discordance
is likely due to differences in coalescence times between
loci, where the process of lineage sorting occurred faster
in genes with small population size [50]. Alternatively,
gene flow could explain allele sharing (see below: “Assess-
ment of different demographic models”).

Our concatenated ML phylogenetic reconstruction
recovered P coreodes and P tertius as sister species,
and this clade was sister to P arthuri. Overall, the three
Psammolestes species were monophyletic with strong
node supports (Fig. 1). Also, a multilocus Bayesian spe-
cies coalescent (MSC) analysis revealed a species tree
with the same topology than the ML tree with posterior
probabilities >0.96 (Additional file 8).

Finally, the mtDNA tree estimated by Bayesian infer-
ence also recovered the same relationships between the
Psammolestes species with high posterior probabilities
(see Additional file 9). Our dated phylogeny suggests that
P arturi diverged from the ancestor of P. coreodes and P.
tertius 4.84 Mya (95% HPD interval=1.32-10.38 Mya;
see Additional file 9). We also found that the subtropical
tempered species diverged 3.75 Mya (95% HPD inter-
val =0.92-8.15 Mya; see Additional file 9).
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Species delimitation tests

Three out of four models tested in BPP with nDNA loci
recovered the known Psammolestes species. The only
exception was the model ‘deep divergence and large
population size, which delimited two species: (i) P
arthuri, and (ii) P coreodes+ P. tertius (Table 1). Also,
mtDNA delimited three species in the four models
tested (Table 1). Consistently, mPTP strongly supported
(ASV=0.87) the same three independent lineages (see
Additional file 10).

Population genetics analyses

Population substitution rate (8) and nucleotide diversity
(i) values were similar among the three Psammolestes
species in each of the seven loci (Table 2). The three spe-
cies showed signatures of population expansion in some
loci, but this pattern was stronger and more consistent
in P. arthuri. Consistently, haplotype networks displayed
the typical star-like pattern where central haplotypes are
coupled with multiple haplotypes with singletons (Fig. 2).
In agreement with the haplotype networks, we detected
stronger genetic differentiation between P arthuri and
both P. coreodes and P. tertius (see Additional files 11, 12,
13, 14, 15, 16 and 17), whereas genetic differences were
weaker between P. coreodes and P. tertius. The structure
algorithm recovered three clusters that were concordant
with the three Psammolestes species (Fig. 3, see Addi-
tional files 10 and 18), although some P. tertius individu-
als showed shared ancestry with P. coreodes. Additionally,
we found that isolation by distance contributed to the
genetic structure observed in our data (Fig. 1B, Addi-
tional files 19, 20). This is mainly due to the geographical
distance of P arthuri compared to the other two species.
Consequently, Monmonier’s algorithm [51] supports a
geographical break that coincides with the Amazon basin
(see Additional files 1, 2, 3, 4, 5, 6 and 7) splitting tropical
species (P arthuri) from temperate species (P coreodes
and P. tertius). This geographic break was recovered in
all genes, suggesting that the tropical P. arthuri diverged
from the other two temperate species in allopatry (Addi-
tional files 1, 2, 3, 4, 5, 6 and 7).
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Assessment of different demographic models

Our results suggest that the demographic model of
‘divergence without gene flow’ fitted our data better than
other models with unidirectional or bidirectional gene
flow. However, this scenario shows some uncertainty
(WAIC =0.30) as AIC values were not considerable differ-
ent between models (see Additional files 18 and 21).

Environmental niche modeling

We found that the ensemble model fitted better than
each independent algorithm (ROC>0.95). This model
showed different non-overlapping suitable areas for
each species of Psammolestes (Fig. 4). Overall, areas with
higher occurrence probability for the three species were
restricted to dry environments such as tropical savan-
nas and the amazon basin showed the lowest suitability
values. Moreover, we discovered that the distribution of
each Psammolestes species was determined by different
environmental variables: annual precipitation for P. ter-
tius, annual range of temperature for P. coreodes, and iso-
thermality for P arthuri (Fig. 4). Consistently, the niche
equivalence tests indicate that climatic niches of these
species have diverged (Table 3).

Discussion

We recovered three well supported lineages that are con-
cordant with the previously described morphospecies
and experimental crosses: P coreodes, P. tertius and P,
arthuri [38]. Both phylogenetic and population genetics
analyses indicate that P. coreodes and P. tertius are geneti-
cally more similar than they are to P arthuri. The spe-
cies distribution analyses suggest that these species are
restricted to tropical savannas and have a low probability
of occurrence in humid areas. These findings support a
role for the Amazon basin as an absolute barrier for the
dispersal of species of Psammolestes.

Our phylogenetic reconstruction contrasts with a pre-
vious study where P, tertius and P. arthuri were recovered
as sister species (bootstrap support=66%), and this clade
sister to P. coreodes (bootstrap support=_87%) [45]. How-
ever, here we obtained higher support values in our ML
tree (Fig. 1A) and the species tree (Additional file 9A) for

Table 1 Species delimitation by Bayesian phylogenetics and phylogeography program

Model nDNA loci mtDNA loci
Posterior Species Species delimited Posterior Species Species delimited
Deep large 0.9950 2 P arthuri 1 3 P arthuri
P, terius/P. coreodes P terius
Deep small 1 3 P arthuri 1 3 P coreodes
Shallow large 1 3 Prterius 08043 3
P, coreodes
Shallow small 1 3 1 3
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Fig. 2 Haplotype networks obtained from the molecular data of the markers. A 28S, B CISP, C CYTB, D LSM, E PJH, FTRNA, G UPCA

P. arthuri

Fig. 3 Population structure analysis plot values using STRUCTURE. Graphical output from the distruct software plotted using K=3 and the matrix
of aligned Q values from populations and individuals obtained from CLUMPP. Input sequences were organized from left to right in the following
order: P arthuri, P tertius, and P. coreodes. Each bar represents an individual, and the color of the bar represents the likelihood of that individual of
belonging to a population. Pink color represents the likelihood of belonging to P arthuri, blue to P, tertius, and yellow to P coreodes

P. tertius

P. coreodes

the monophyly of the clade composed by P. tertius and P
coreodes, sister to P. arthuri. This result is consistent both
with the geographic and genetic distance between these
taxa. Despite of the contentious systematics of the genus
[28, 40-44], all our analyses validate the existence of
three lineages of Psammolestes thus supporting the origi-
nal species description based on morphological traits [31,
35, 38].

Our mtDNA divergence times estimation, the strong
genetic structure we observed, and the absence of gene
flow between species suggest that the diversification
of Psammolestes is not explained by recent dispersal
events across corridors in the forested Amazon basin
nor by the Pleistocene arc hypothesis [7]. In contrast,
our results agree with a scenario of allopatric differen-
tiation via long distance dispersal event(s) across the

Amazon in the late Miocene, followed by recent local
geographic expansion as suggested by the Tajimas’ D
value [52-55]. However, we cannot rule out that the
current disjunct distribution of the different species of
Psammolestes is the result of extinction in the Amazon
basin. Interestingly, the diversification times of Psam-
molestes do not mirror those of Phacellodomus rufi-
frons (Furnariidae), a bird whose nests are commonly
invaded by these kissing bugs [11] and whose diversi-
fication occurred in the presence of gene flow in the
Pleistocene [11]. Therefore, the historical dispersion
patterns of Furnariidae birds do not explain the diver-
sification of Psammolestes. Nevertheless, future studies
are needed to understand the evolutionary importance
of this peculiar association with Furnariidae birds,
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P. arthuri

Occurrence
probability

P. coreodes

Occurrence
probability

P. tertius

Occurrence
probability

20

0 500

influences the most of the distribution of each one of the species

Variable P. tertius P. coreodes  P. arthuri

Altitude 0.193 0.023 0.081
Mean of the annual 0.113 0.159 0.074

temperature
Isothermality 0.110 0.240 0.410

Annual range of

temperature 0.109 0.513 0.110
Annual precipitation 0.433 0.059 0.084

Precipitation
0.020 0.040 0.075

seasonality

Fig. 4 Environmental niche modeling test. A P arthuri B P. coreodes C P. tertius. Highlighted areas in dark green correspond to the areas where it is
more probable to find individuals of each one of the three species. D Variables measured on the models. Highlighted in red there is the variable that

Table 3 Niche overlap test (NOT) and Niche Divergence test (NDT) results for each one of the combinations between Psammolestes

species
Species 1 Species2 Niche overlap test (NOT) Niche divergence test (NDT) Interpretation

Equivalency test Backgroundtest Equivalencytest Background test

D pvalue b pvalue »p pvalue b p value
P arthuri P, tertius 0.03309 0.00099 0.16666 0.375 0.03309 0.00099 0.14285 0.1666  Strong evidence niches have diverged
P arthuri P coreodes 0.00189 0.00099 0.1578  0.768 0.00189 0.00099 0456 09809  Strong evidence niches have diverged
P coreodes P tertius 0.00351 0.00099 02 0.05882 0.00351 0.00099 0.00099 0.0625  Strong evidence niches have diverged

which seems to be exclusive to these Triatominae
species.

Our niche modeling results suggest that, although all
species of Psammolestes occur in the SDTF, they have
divergent niches shaped by different climatic predic-
tors, indicating that niche conservatism does not play
a role in the diversification of these triatomines. This
finding agrees with previous studies that documented

nonoverlapping niches for P. coreodes and P. tertius [30,
32]. Such an scenario of niche divergence agrees with
the absence of gene flow between the three species
and the inviability reported in experimental crosses
between P. tertius and P. coreodes [38]. However, the
relevance of other factors in species divergence, such as
biotic interactions need to be investigated.
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Fig. 5 Distribution of the three Psammolestes species sampled in this study. Dots represent the sampling sites of this work while polygons
symbolize previously reported sampling sites by Ceccarelli et al. [34], where the Psammolestes species have been found. P arthuri is represented by

In summary, Psammolestes has three genetically
structured species that also differ in their climate
niches and morphology. They diverged in allopatry
without gene flow, and their differentiation involved
long distance dispersal event(s) across the Amazon
basin (which is a current barrier for their dispersal).
Further investigation is needed to elucidate the behav-
ior and ecology of each species as well as the reproduc-
tive barriers maintaining their integrity. These findings
are relevant in terms of understanding the transmission
dynamics of Chagas disease and future improvement of
vector control strategies in endemic countries.

Materials and methods

Sampling

We collected a total of 92 individuals of the three Psam-
molestes species, from 12 localities in Venezuela, Colom-
bia, and Brazil (Fig. 5; Additional file 22). We also
sampled Rhodnius prolixus to use as an outgroup in our
phylogenetic inferences (see below). Outgroup selection
was based on previous phylogenetic reconstructions,

where Psammolestes was shown to be sister taxa to some
of the prolixus group species (Rhodnius seems to be
paraphyletic with respect to Psammolestes), including
R. prolixus [45]. The samples obtained were preserved
in absolute ethanol and stored at — 20 °C until needed.
All collections were done under the permit 63257-
2014 awarded to Universidad del Rosario by the ANLA
(Autoridad Nacional de Licencias ambientales).

Ethical statement

This study was submitted and approved by the eth-
ics committee of Universidad del Rosario entitled
“Genomica, evolucion y biogeografia de especies del
género Rhodnius: vectores de la enfermedad de Chagas”
act number 007/2016.

Extraction, amplification, and alignment of DNA data

We extracted DNA from leg tissue, using the DNeasy®
Blood & Tissue kit, with modifications in the original
protocol suggested by the manufacturer for extractions
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in insects [56]. We amplified and sequenced seven loci
to explore phylogenetic relations among Psammolestes:
Four new nuclear loci, tRNA Guanine (37) -N (1) meth-
yltransferase (TRNA), Putative juvenile hormone induc-
ible protein (PJH), Probable cytosolic iron sulfur protein
assembly protein Ciao 1 (CISP), Lipoyl synthase, mito-
chondrial (LSM), along with the previously reported
Uncharacterized Protein for Cell Adhesion (UPCA) [57,
58] and two loci previously used in Rhodniini tribe phylo-
genetic analyses, 28S rRNA (28S) [43] and Cytochrome b
(CYTB) [28, 59] (see Additional file 23). Amplicons were
visualized on a 1.5% agarose gel and the products ampli-
fied were purified using the PCR kit ExoSAP-IT Product
Cleanup (Affymetrix, Santa Clara, CA, USA) and bidirec-
tionally sequenced by the Sanger method. Contigs were
assembled, checked, and edited in CLC Main Workbench
20.0 (https://digitalinsights.qiagen.com). Sequence align-
ment per locus was performed using MAFFT [60] and
the results were visually inspected and manually cor-
rected if necessary, using Mesquite [61]. We ran PHASE
algorithm with 1000 iterations per simulation imple-
mented in DnaSP v6.12.03 [62] to resolve alignment
ambiguities. Finally, we generated a concatenated align-
ment with the seven loci in Mesquite (nuclear and mito-
chondrial: 4.342 bp) [61]. Sequences from this study were
submitted in GenBank and numbers can be visualized in
Additional file 24.

Molecular phylogenetic analysis
We reconstructed phylogenetic relationships among
the three Psammolestes species for each locus and the
concatenated alignment (one partition per locus) using
maximum likelihood (ML) inference in IQ-Tree 2 [63].
We selected the best substitution model for each case
using the IQ-Tree 2 tool ModelFinder [64] based on the
Bayesian Information Criterion (BIC; Schwarz, 1978).
The substitution model selected for each locus was:
HKY +F for 28S rRNA (28S) and RNA Guanine (37) -N
(1) methyltransferase (TRNA), F81 +F +1 for Lipoyl syn-
thase, mitochondrial (LSM), F81+F for Probable cyto-
solic iron sulfur protein assembly protein Ciao 1 (CISP),
HKY+F+1 for Putative juvenile hormone inducible
protein (PJH), K2P for Uncharacterized Protein for Cell
Adhesion (UPCA), and HKY + F + G4 for Cytochrome b
(CYTB). Node support was assessed with UltraFast Boot-
strap [66], aBayes [67] and SH-aLRT [68] with 10,000
pseudoreplicates in all cases. For the partitioned analysis,
node supports were calculated by resampling both the
partitions and the sites within the resampled partitions
[69].

We also estimated the Psammolestes species tree using
multilocus coalescence species approach in BEAST2
v.2.6.6 with genes included in this study [70, 71]. We
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executed three independent runs of 50 million genera-
tions, sampling every 1000 generations with burn-in of
15.000 chains. We determined the appropriate molecu-
lar clock in MEGA 10.0 [72] and used relaxed uncorre-
lated lognormal clocks for all partitions. We selected Yule
model for speciation process and used the best models
of substitutions estimated in IQ-tree [63]. The LogCom-
biner v.1.10.4 [73] tool was used to combine independ-
ent log files and species trees files obtained in each run
(three). Trees were visualized in DensiTree v.2.1. The
convergence of the chains in the model was examined by
confirming the trace files in Tracer v.1.7.1 [74], obtaining
an effective sample size of > 200 for all parameters. Lastly,
maximum credibility tree was produced in Tree Annota-
tor with burn in of 10% and visualized in Figtree [74].

Finally, we estimated divergence times using the mito-
chondrial locus CYTB in BEASTv.2.6.6 [70]. We only
used this locus, because is the only one with a reported
substitution rate, which is 0.012—0.018 substitution/site/
million years, and has been used for node dating in previ-
ous works [75, 76]. We used a Yule model with two inde-
pendent runs of 80 million generations, sampled every
1000 generations. We examined the convergence of the
chains in Tracer [74] to confirm that the effective sam-
ple sizes of the parameters were >200. We combined the
independent runs in Logcombiner [73, 77] and selected
the maximum credibility tree in tree annotator, discard-
ing the 10% of the trees as burn-in .

Species delimitation tests

We established the number of Psammolestes lineages
with two delimitation methods: The Bayesian Phylo-
genetics and Phylogeography method (BPP; [78]) and
the multi-rate Poisson Tree Processes method (mPTP;
[79]). For the BPP analysis, we analysed the mtDNA and
nDNA independently as recommended elsewhere [78].
We performed a species tree estimation and joint spe-
cies delimitation for both datasets, assigning individuals
to a “species” based on the results of the phylogenetic
trees previously constructed [80]. We implemented four
combinations of priors, for divergence times (t) and
population size parameters (q), allowing to test differ-
ent evolutionary scenarios: large population sizes (=G
(1, 10)), shallow population sizes (=G (2, 2000)), deep
divergence times (t=G (1, 10)) and shallow divergence
times (t=G(2, 2000)). Each analysis used 100,000 itera-
tions per run, sampling every 2 iterations, and using 10%
of the iterations in the chain as burn-in.

We used the best ML concatenated tree for the mPTP
method. The first step on this method is to calculate the
minimum branch length of the tree, correcting the poten-
tial error when similar sequences are present. Then, we
ran 10 MCMC replicates of 100,000,000 steps, sampling
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every 1000 steps, of which 10% were used as burn-in.
Lineage congruence between both methods were consid-
ered as putative species following Carstens et al. [81].

Population genetics analyses

We calculated the haplotype diversity (%), number of seg-
regating sites (S), population substitution rate (8), and
nucleotide diversity (i) to characterize the genetic variabil-
ity of each Psammolestes species in DNASP v6.12.03 [62].
Moreover, we determined the genetic structure among the
three species of Psammolestes with a relative measure (Fgr)
and two absolute ones (D,, ny). To evaluate deviations
from panmixia, we implemented the Hudson permuta-
tion test [82] with 1000 replicates. We also computed three
neutrality tests: Ramos-Onsins and Rozas R, (R,; Ramos-
Onsins and Rozas [83]), Tajima’s D (D; Tajima [84]) and Fu
& Li’s F and D statistics (FF, FD; Fu and Li [85]), in order
to examine possible signatures of population expansion or
contraction. We constructed TCS haplotype networks [86]
for each locus using PopArt v1.7 [87].

We explored the geographical diversification of Psam-
molestes testing for isolation by distance implementing
a Mantel test in the R package vegan [88] and a linear
regression between the genetic distance (1/1 — Fgr) and
the geographical distances calculated in the package geo-
sphere [89]. Additionally, we employed the Monmonier’s
algorithm [90] in the R package adegenet [91] using a
Delaunay triangulation to detect possible boundaries
associated with geographic barriers.

Lastly, STRUCTURE v2.3.4 [92] was implemented to
determine the number of genetic clusters (K) present in our
data. We ran the analysis with the admixture model with
uncorrelated alleles using 100,000 MCMC iterations, sam-
pling K values from 1 to 10, and 5 iterations per K, along
with a burn-in length of 100,000. The best K value was
selected following Evanno et al. [93] and plotting the mean
likelihood L(k) and variance per K using the STRUCTURE
HARVESTER (Earl and vonHoldt [94]; http://taylor0.biolo
gy.ucla.edu/structureHarvester/; Evanno et al. [95]). The
results of the best identified values of k were summarized
in clump [95] and plotted using distruct [96].

Environmental niche modelling

Species distribution modelling

Models were constructed using BIOMOD2 package [97]
for each Psammolestes species using four algorithms:
Artificial Neural Networks (ANN; [98]), Generalized Lin-
ear Models (GLM; [99], Generalized Boosting Models
(GBM; [100]), and Maximum Entropy Models (MAX-
ENT [101]). We obtained Psammolestes species occur-
rence records from DataTri [34]. As we do not have an
absence record for these species, we generated a pseu-
doabsences database limited to areas in south America
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where: (i) other Triatominae species were recorded, but
Psammolestes was absent, and (ii) environmental condi-
tions are not suitable for these taxa [102, 103]. An equal
weighting for presences and pseudo-absences (prevalence
weights =0.5) was applied for modeling as recommended
[104]. Five environmental variables were used (annual
mean temperature, isothermality, annual range of temper-
ature, annual precipitation and precipitation seasonality)
at spatial resolution of 1 km. These variables were chosen
from the 19 CHELSA layers [105] because they exhib-
ited correlation values <0.5 among them. Additionally,
we used a topographic variable (altitude) obtained from
Reuter, Nelson and Jarvis [106]. Algorithms were cali-
brated using 80% of the occurrence points and evaluated
the accuracy of the models with the remaining 20%. This
procedure (cross-validation) was repeated three times.
Three different ensemble models were generated for the
three Psammolestes species based on the combination of
the four models produced by the previously mentioned
algorithms. Two metrics were used to choose the model
that best predicts the distribution of the taxa: The True
Skill Statistic (TSS) and the area under the curve (AUC)
of the receiver-operating characteristic (ROC) [107]. Vari-
able importance to the model was calculated based on the
Pearson correlation coefficient between the model with all
variables and model where each variable was omitted in
turn, using BIOMOD?2 package [97].

Environmental niche of the parental species

We estimated the environmental niche equivalence
between all pairs of Psammolestes species using R pack-
age humboldt [108]. To do this, the overlap Schoener’s
D statistic was calculated. This statistic goes from 0
to 1, meaning no overlap and full overlap respectively
[109]. D statistical significance was obtained compar-
ing the realized niche overlap against a null distribu-
tion of 1000 randomly generated overlaps from the
reshuffled occurrence dataset and tested whether niche
background and niche equivalency were different from
the expectations by chance at a=0.05 [108]. This was
done using the entire species distribution under com-
parison (niche overlap test=NOT) and using only the
area where they overlap (niche divergence test=NDT)
[110]. We interpreted the NOT and NDT results fol-
lowing Table 2 from Brown and Carnaval [110].

Supplementary Information

The online version contains supplementary material available at https://doi.
0rg/10.1186/512862-022-01987-x.

Additional file 1. CYTB Phylogenetic reconstruction and Barrier test. (A)
Phylogenetic reconstruction with the ML algorithm based on the mito-
chondrial marker CYTB (B) Barrier test algorithm based on molecular and
geographical arrays. Bootstrap values on the internal nodes are shown
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in the following order: SH-aLRT/aBayes/ultrafast bootstrap support. Only
nodes with bootstrap values higher than 60 are shown.

Additional file 2. PJH Phylogenetic reconstruction and Barrier test (A)
Phylogenetic reconstruction with the ML algorithm based on the nuclear
marker PJH (B) Barrier test algorithm based on molecular and geographi-
cal arrays. Bootstrap values on the internal nodes are shown in the follow-
ing order: SH-aLRT/aBayes/ultrafast bootstrap support. Only nodes with
bootstrap values higher than 60 are shown.

Additional file 3. 28S Phylogenetic reconstruction and Barrier test (A)
Phylogenetic reconstruction with the ML algorithm based on the nuclear
marker 28S (B) Barrier test algorithm based on molecular and geographi-
cal arrays (B). Bootstrap values on the internal nodes are shown in the
following order: SH-al.RT/aBayes/ultrafast bootstrap support. Only nodes
with bootstrap values higher than 60 are shown.

Additional file 4. CISP Phylogenetic reconstruction and Barrier test (A)
Phylogenetic reconstruction with the ML algorithm based on the nuclear
marker CISP (B) Barrier test algorithm based on molecular and geographi-
cal arrays. Bootstrap values on the internal nodes are shown in the follow-
ing order: SH-aLRT/aBayes/ultrafast bootstrap support. Only nodes with
bootstrap values higher than 60 are shown.

Additional file 5. LSM Phylogenetic reconstruction and Barrier test. (A)
Phylogenetic reconstruction wit the ML algorithm based on the nuclear
marker LSM (B) Barrier test algorithm based on molecular and geographi-
cal arrays. Bootstrap values on the internal nodes are shown in the follow-
ing order: SH-aLRT/aBayes/ultrafast bootstrap support. Only nodes with
bootstrap values higher than 60 are shown.

Additional file 6. TRNA Phylogenetic reconstruction and Barrier test. (A)
Phylogenetic reconstruction with the ML algorithm based on the nuclear
marker TRNA (B) Barrier test algorithm based on molecular and geographi-
cal arrays. Bootstrap values on the internal nodes are shown in the follow-
ing order: SH-alL.RT/aBayes/ultrafast bootstrap support. Only nodes with
bootstrap values higher than 60 are shown.

Additional file 7. UPCA Phylogenetic reconstruction and Barrier test. (A)
Phylogenetic reconstruction with the ML algorithm based on the nuclear
marker UPCA (B) Barrier test algorithm based on molecular and geo-
graphical arrays. Bootstrap values on the internal nodes are shown in the
following order: SH-aLRT/aBayes/ultrafast bootstrap support. Only nodes
with bootstrap values higher than 60 are shown.

Additional file 8. Bayesian inference of species tree based on multilocus
data (A) Maximum clade credibility tree based on Bayesian inference of
the seven genes used in this study. The values observed represent poste-
rior probabilities. (B) Bayesian species tree from multilocus data.

Additional file 9. Bayesian inference phylogenetics tree for the

locus CYTB obtained in *BEAST. Horizontal purple bars illustrate the 95%
HPD for the nodes' divergence time. Branch with a posterior probability
above 0.95 are show

Additional file 10. Posterior probabilities on nodes, calculated by the
mPTP algorithm.

Additional file 11. Heatmaps calculated for three different statistics:
A) Fst, B) Dxy and C) Da for three species based on the molecular data
obtained from the nuclear marker 28S.

Additional file 12. Heatmaps calculated for three different statistics:
A) Fst, B) Dxy and C) Da for three species based on the molecular data
obtained from the nuclear marker CISP

Additional file 13. Heatmaps calculated for three different statistics:
A) Fst, B) Dxy and C) Da for three species based on the molecular data
obtained from the mitochondrial marker CYTB.

Additional file 14. Heatmaps calculated for three different statistics:
A) Fst, B) Dxy and C) Da for three species based on the molecular data
obtained from the nuclear marker LSM.

Additional file 15. Heatmaps calculated for three different statistics:
A) Fst, B) Dxy and C) Da for three species based on the molecular data
obtained from the nuclear marker PJH.

Additional file 16. Heatmaps calculated for three different statistics:
A) Fst, B) Dxy and C) Da for three species based on the molecular data
obtained from the nuclear marker TRNA.

Additional file 17. Heatmaps calculated for three different statistics:
A) Fst, B) Dxy and C) Da for three species based on the molecular data
obtained from the nuclear marker UPCA.

Additional file 18. Demographic models created with Phylogeographic
Inference Using Approximate Likelihoods (PHRAPL) to test the evolution
of Psammolestes. (A) Divergence with no migration (B) Divergence with
bidirectional migration between P, coreodes and P, tertius. (C) Divergence
with bidirectional migration between P, tertius and P arthuri. (D) diver-
gence with bidirectional migration between P tertius with P. coreodes,

and P tertius with P, arthuri. (E) Divergence with bidirectional migration
between P. coreodes and P, arthuri. (F) Divergence with bidirectional migra-
tion between P, tertius with P. coreodes, and P, coreodes with P, arthuri. (G)
Divergence with bidirectional migration between P, tertius with P arthuri,
and P arthuri with P. coreodes (H) Divergence with bidirectional migration
between the three Psammolestes species. Starting from this point, all of
the demographic models include bidirectional migration between P
arthuri and the MRCA (most recent common ancestor) of P, tertius and P
coreodes. (1) Divergence with bidirectional migration between P arthuri
and the MRCA of P tertius and P. coreodes. (J) Divergence with bidirec-
tional migration between P, coreodes and P, tertius. (K) Divergence with
bidirectional migration between P, tertius and P. arthuri. (L) divergence with
bidirectional migration between P, tertius with P. coreodes and P, arthuri. (M)
Divergence with bidirectional migration between P. coreodes and P. arthuri.
(N) divergence with bidirectional migration between P. coreodes with P.
tertius and P arthuri. (O) Divergence with bidirectional migration between
P arthuri with P. coreodes and P, tertius. (P) Divergence with bidirectional
migration between the three Psammolestes species. Support values for the
demographic scenarios are shown under each figure.

Additional file 19. Linear correlations of Isolation by distance (IBD) test.
(A) 28S (B) CISP (C) CYTB (D) LSM (E) TRNA (F) UPCA (G) PJH.

Additional file 20. Mantel’s test for isolation by distance (IBD) and linear
correlation results. The result of the Mantel’s test is shown in the two first
columns of the table, and the results of the Pearson’s correlation test cor-
respond to the third column. The last two columns show the results of the
linear correlation tested between geographical and genetic distances.

Additional file 21. Fit of the demographic models tested in.

Additional file 22. Individuals of Psammolestes species collected in this
study.

Additional file 23. Genes included in this study, the primers used to
obtain their corresponding sequence, and the length of each one of
them."*"symbolizes a new marker used for the delimitation of the Psam-
molestes species.

Additional file 24. GenBank accession numbers of seven loci analyzed in
this study and samples origin included in this study.
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